基于Transformer模型的DNA序列比对方法研究

学术背景 DNA序列比对是基因组学中的一项核心任务,旨在将短DNA片段(reads)定位到参考基因组上的最可能位置。传统方法通常分为两个步骤:首先对基因组进行索引,然后通过高效搜索定位reads的可能位置。然而,随着基因组数据的爆炸式增长,尤其是面对长达数十亿碱基的参考基因组时,传统的比对方法在计算效率和准确性上面临巨大挑战。近年来,Transformer模型在自然语言处理(NLP)领域的成功启发了研究人员将其应用于DNA序列分析。尽管已有研究表明Transformer模型在短DNA序列分类任务中表现优异,但序列比对任务需要在整个基因组范围内进行搜索,这对模型的全局搜索能力提出了更高要求。 为此,本研究提出了一种名为“embed-search-align”(ESA)的新框架,旨在通过Tran...

使用Transformer高效增强冷冻电镜密度图的研究:CryoTen

学术背景 冷冻电子显微镜(Cryo-EM)是解析大分子(如蛋白质)结构的重要实验技术。然而,Cryo-EM的有效性常常受到实验条件(如低对比度和构象异质性)导致的噪声和密度值缺失的制约。尽管现有的全局和局部图像锐化技术被广泛用于改善Cryo-EM密度图,但在高效提升其质量以构建更精确的蛋白质结构方面仍面临挑战。为了解决这一问题,研究人员开发了CryoTen,一种基于3D UNETR++风格Transformer的模型,旨在有效增强Cryo-EM密度图的质量。 论文来源 这篇论文由Joel Selvaraj、Liguo Wang和Jianlin Cheng共同撰写。Joel Selvaraj和Jianlin Cheng来自美国密苏里大学电气工程与计算机科学系,而Liguo Wang则来自布鲁克...

基于信息熵增强BERT和多向GRU的S-硫化位点预测方法

背景介绍 蛋白质翻译后修饰(Post-Translational Modifications, PTMs)是调节细胞活动的关键机制,包括基因转录、DNA修复和蛋白质相互作用等。其中,半胱氨酸(Cysteine)作为稀有氨基酸,通过其硫醇基团(Thiol Group)参与多种PTMs,尤其是在氧化还原平衡和信号传递过程中发挥着重要作用。S-硫酰化(S-Sulfhydration)是一种重要的PTM,与心血管疾病和神经系统疾病的发生和发展密切相关。然而,S-硫酰化的具体机制仍不明确,尤其是在位点识别方面存在较大的挑战。 传统的S-硫酰化位点识别方法,如生物素转换法(Biotin Conversion Method)和马来酰亚胺荧光法(Maleimide Fluorescence Method),...

基于APNet的稀疏深度学习模型在COVID-19严重程度驱动因素发现中的应用

学术背景 COVID-19大流行对全球公共卫生系统造成了巨大冲击,尽管目前疫情已有所缓解,但其复杂的免疫病理机制、长期后遗症(如“长新冠”)以及未来可能出现的类似威胁,仍然推动着相关研究的深入。特别是重症COVID-19患者,常伴随“细胞因子风暴”、急性呼吸窘迫综合征(ARDS)、多器官衰竭等严重症状,亟需更精准的预测模型和生物标志物来指导临床决策。 传统的机器学习(ML)和深度学习(DL)模型在高通量组学数据分析中表现出色,但往往缺乏生物可解释性,难以揭示非线性蛋白质动态(如翻译后修饰)和复杂的信号通路调控机制。为了解决这一问题,作者开发了APNet(Activity PASNet),一种结合了差异活性分析和生物信息驱动的稀疏深度学习模型,旨在通过可解释的预测发现COVID-19重症的驱动...

SP-DTI:基于亚口袋信息的Transformer模型用于药物-靶点相互作用预测

学术背景 药物-靶点相互作用(Drug-Target Interaction, DTI)预测是药物发现中的关键环节,能够显著降低实验筛选的成本和时间。然而,尽管深度学习技术已经提升了DTI预测的准确性,现有方法仍面临两大挑战:泛化能力不足和亚口袋级相互作用的忽视。首先,现有模型在未见过的蛋白质和跨域设置下性能显著下降;其次,当前的分子关系学习往往忽略了亚口袋级别的相互作用,而这些相互作用对于理解结合位点的细节至关重要。为了解决这些问题,研究人员提出了一种名为SP-DTI的新型模型,通过引入亚口袋分析和预训练语言模型,提升了DTI预测的准确性和泛化能力。 论文来源 这篇论文由Sizhe Liu、Yuchen Liu、Haofeng Xu、Jun Xia和Stan Z. Li共同撰写。他们分别来...