深度学习中的损失函数与性能指标:全面综述

深度学习(Deep Learning)作为人工智能领域的重要分支,近年来在计算机视觉、自然语言处理等多个领域取得了显著进展。然而,深度学习的成功在很大程度上依赖于损失函数(Loss Function)和性能指标(Performance Metrics)的选择。损失函数用于衡量模型预测与真实值之间的差异,并指导模型的优化过程;而性能指标则用于评估模型在未见数据上的表现。尽管损失函数和性能指标在深度学习中至关重要,但面对众多的选择,研究者和从业者往往难以确定最适合其特定任务的方法。 为此,本文旨在对深度学习中最常用的损失函数和性能指标进行全面回顾,帮助研究者和从业者更好地理解和选择适合其任务的工具。文章不仅涵盖了经典的回归和分类任务,还深入探讨了计算机视觉、自然语言处理(NLP)以及检索增强生成...

Web of Things (Wot) 安全威胁检测的挑战与深度学习技术应用

随着物联网(Internet of Things, IoT)和Web of Things (Wot)的快速发展,安全问题日益凸显。尤其是拒绝服务攻击(Denial of Service, DoS)的频发,使得Wot系统的安全性成为亟待解决的问题。Wot通过将物联网设备与Web技术集成,实现了设备与互联网的无缝连接,但这也带来了新的安全挑战。由于Wot设备的异构性和开放性,传统的安全机制难以应对复杂的攻击场景。因此,本文旨在通过系统文献综述(Systematic Literature Review, SLR),探讨Wot系统中的安全威胁,特别是DoS攻击的检测与防御机制,并分析深度学习(Deep Learning, DL)技术在这一领域的应用。 论文来源 本文由Ruhma Sardar、Tay...

基于深度学习的多模态数据整合在乳腺癌无病生存预测中的应用

乳腺癌是全球女性中最常见的恶性肿瘤之一,尽管早期干预和适当治疗已经显著提高了患者的生存率,但仍有约30%的病例会复发并发生远处转移,导致5年生存率低于23%。传统的临床预测方法,如生物标志物、临床影像和分子检测,虽然具有一定的价值,但其敏感性低、成本高、可用性有限,且存在患者内部的异质性等问题。因此,开发新的方法来可靠地预测术后乳腺癌患者的复发风险和生存率,以便及时干预和改善整体预后,成为当前研究的迫切需求。 近年来,人工智能(AI)技术的快速发展为乳腺癌的预后预测提供了新的可能性。深度学习作为一种强大的AI技术,能够从复杂的多模态数据中提取有价值的信息,结合病理图像、分子数据和临床信息,有望显著提高乳腺癌无病生存(Disease-Free Survival, DFS)的预测准确性。然而,现...

MMNC——一种多模态可解释的非编码RNA分类方法

非编码RNA(ncRNA)在细胞过程和疾病发展中扮演着关键角色。尽管基因组测序项目揭示了大量非编码基因的存在,但ncRNA的功能和分类仍然是一个复杂且具有挑战性的问题。ncRNA的多样性、复杂性和功能性使其成为生物医学研究的重要对象,尤其是在生物标志物和治疗靶点的发现中。然而,现有的ncRNA分类工具大多仅依赖于单一或两种数据类型(如序列或二级结构),忽略了其他可能提供重要信息的数据源。此外,现有方法通常缺乏可解释性,难以揭示不同ncRNA类别的特征。 为了解决这些问题,来自Université Paris-Saclay和Institut Curie的研究团队提出了一种名为MMNC(Multi-Modal Interpretable Representation for Non-Coding...

基于深度学习的酶筛选工具DeepES在孤儿酶基因识别中的应用

学术背景 随着测序技术的飞速发展,科学家们已经能够获得大量的蛋白质序列数据,其中包括许多酶序列。然而,尽管像京都基因与基因组百科全书(KEGG)和BRENDA这样的大型酶数据库已经建立,许多酶的序列信息仍然缺失。这些缺乏序列信息的酶被称为“孤儿酶”(orphan enzymes)。孤儿酶的存在严重阻碍了基于序列相似性的功能注释,导致在理解序列与酶促反应之间关系时存在巨大空白。 孤儿酶的问题不仅限于序列信息的缺失,还影响了我们对生物过程的理解。例如,人类肠道微生物群中的许多代谢过程,如短链脂肪酸(short-chain fatty acid, SCFA)的生产,与肠道炎症和癌症进展密切相关。然而,许多这些反应涉及孤儿酶,导致相关基因无法被识别。因此,开发一种不依赖于序列相似性的方法来预测酶活性...