PlantCaduceus:利用预训练DNA语言模型实现单碱基分辨率植物基因组跨物种建模

植物基因组跨物种建模的里程碑:PlantCaduceus DNA语言模型的创建与突破性应用 一、学术背景与研究动因 在过去二十年里,伴随高通量测序技术的飞速发展,超过1000种植物基因组已经发表,预计未来这一数字还将持续激增。然而,对这些庞大基因组的功能元素进行注释、理解它们在转录和翻译层面的表达调控,以及分析不同遗传变异对于生物个体适应性和性状的影响,一直是植物基因组学乃至作物改良领域中亟需突破的“瓶颈”问题。 相较于动物和人类,植物基因组拥有更复杂的结构,表现为基因组大小巨大、重复序列比例极高、物种间多样性极强,甚至同属同种内部亦具有极大变异。因此,基于单一物种构建的深度学习(deep learning,DL)模型,往往只在特定物种内表现良好,难以跨物种泛化。这极大限制了新测序植物(尤其...

基于仿真推断的冷冻电镜分子构象模板匹配方法

利用仿真推断加速单分子结构识别 ——《amortized template matching of molecular conformations from cryoelectron microscopy images using simulation-based inference》研究新闻报告 研究背景与意义 在分子生物学和结构生物学领域,理解生物大分子如何通过不同构象(conformation)的转变来执行其功能,是揭示生命过程机制的核心目标。众所周知,蛋白质、核酸等生物大分子具有高度的柔性,它们在细胞中不断地于各种构象之间重组,而这些不同的构象往往与分子的生物学功能直接相关。因此,实验上全面刻画分子体系的“构象分布(conformational ensemble)”和结构动力学,成为...

DeepRNA-Twist:基于语言模型引导的RNA扭转角预测与注意力-初始网络

一、学术背景及研究动机 随着生命科学与生物信息学的飞速发展,RNA分子结构及其功能研究成为热点领域。RNA不仅仅是基因信息的传递者,更在调控、催化等多种生理过程中扮演关键角色。RNA分子的三维结构直接影响其生物学功能,而RNA结构的精确解析对于基础科学、药物设计、疾病机制研究等均具有重要意义。然而,RNA的序列到结构转换远比蛋白质复杂,不仅因为RNA的骨架有七个主链扭转角(α, β, γ, δ, ε, ζ, χ),而且还涉及复杂的伪扭转角(η, θ),加之非经典碱基对、多重环、三元作用等多样结构因素,使得高精度RNA三维结构预测极具挑战性。 传统的实验测定RNA结构方法如核磁共振(NMR)、X射线晶体学(X-ray crystallography)、冷冻电镜(cryo-EM)手段,不但昂贵且...

Deep scStar: 利用深度学习从单细胞RNA测序和空间转录组数据中提取和增强表型相关特征

近年来,单细胞测序(single-cell RNA sequencing,scRNA-seq)与空间转录组学(spatial transcriptomics, ST)等前沿技术极大推动了生命科学与临床医学的发展。其揭示了细胞异质性,提供了疾病、发育、免疫等重大领域的全新洞见。然而,大规模单细胞数据由于技术噪声强、批次效应(batch effects)复杂、生物信号多样且杂乱,使得“准确提取与增强与表型相关的特征”成为关键挑战之一。许多传统方法虽主攻降噪、整合,却可能同时削弱乃至丢失关键的表型决策信号,限制了研究者对疾病机制与细胞间互作的深入理解。 一、研究背景与意义 单细胞表型相关特征的识别对于阐明疾病进展、免疫应答、肿瘤耐药等问题至关重要。例如,在癌症免疫治疗、个体化诊疗中,能否准确识别那...

基于YOLOv8的实时密集人群异常行为检测增强框架

学术背景 随着公共安全需求的日益增加,尤其是在大型宗教活动如麦加朝觐(Hajj)期间,密集人群中的异常行为检测成为了一个至关重要的课题。现有的检测方法在面对遮挡、光照变化和统一着装等复杂条件时,往往表现不佳,导致检测精度下降。为了应对这些挑战,研究者们致力于开发更为先进的计算机视觉技术,以提高实时监测的准确性和效率。 本研究的核心在于提出一种改进的YOLOv8模型——Crowd Anomaly Detection Framework (CADF),通过集成Soft-NMS(非极大值抑制的软版本)技术,显著提升了在复杂环境下的检测精度。该研究不仅针对Hajj朝觐的特殊场景进行了优化,还在多个公开数据集上进行了验证,展示了其广泛的适用性和鲁棒性。 论文来源 本论文由Rabia Nasir、Zak...