基于PSMA PET/CT的多模态深度学习模型用于预测前列腺癌患者盆腔淋巴结转移的精准性

深入解析基于PSMA PET/CT的多模态深度学习模型以预测前列腺癌患者淋巴结转移 背景介绍 前列腺癌(Prostate Cancer, PCA)是男性中最常见的恶性肿瘤之一,也是导致癌症相关死亡的主要原因之一。在临床局限性前列腺癌患者中,扩展盆腔淋巴结清扫(Extended Pelvic Lymph Node Dissection, EPLND)通常被视为淋巴结分期的最准确方式。然而,这种手术操作范围广,不仅会增加术中和术后并发症的风险,还可能延长手术时间和提高医疗成本。尽管EPLND在淋巴结转移(Lymph Node Invasion, LNI)评估中的作用备受争议,但仍有许多患者因其预测LNI的高效性而需接受该操作。 当前,临床上主要通过预测模型(如Memorial Sloan Ket...

EvoAI实现蛋白质序列空间的极端压缩与重建

蛋白序列空间的极端压缩与重建:EvoAI的突破性研究 背景介绍 蛋白质的设计和优化已经成为生物技术、医学和合成生物学领域中的核心挑战之一。蛋白质的功能由其序列和结构决定,但这一功能性的序列空间(sequence space)非常复杂且高维,包含极大量的可能性。探索这一领域的关键性问题在于如何有效地解析和压缩这片几乎无穷大的序列空间,进而识别与功能密切相关的特征。以往的方法包括直接进化(directed evolution)、深度突变扫描(deep mutational scanning, DMS)、位点饱和突变(site-saturation mutagenesis)等实验策略,虽为揭示基因型与表型的关系提供了重要的见解,但在序列空间覆盖范围、准确性和高维分析能力方面受到显著限制。而计算方法...

使用自监督深度学习解决冷冻电镜中的偏好取向问题

克服单粒子冷冻电镜中的优选取向问题:深度学习的创新解法 背景介绍 近年来,单粒子冷冻电子显微镜(Single-Particle Cryo-EM)技术因其能够解析生物大分子在接近天然状态下的原子分辨率结构,已成为结构生物学领域的核心技术。然而,在实际应用中,研究者一直面临一个棘手的技术瓶颈,即“优选取向”(Preferred Orientation)问题。这一问题主要由于生物分子在冷冻电镜网格上分布不均,导致在某些方向上的数据采样不足。这种取向偏差通常是由样品制备过程中分子与空气-水界面(Air-Water Interface, AWI)或支撑膜-水界面的相互作用引起的。 优选取向问题在三维重构中显得尤为突出,因为它带来的各向异性(Anisotropy)会使三维结构受损,甚至失真,具体表现为二...

多尺度足迹揭示顺式调控元件在细胞分化和衰老过程的作用

多尺度足迹揭示顺式调控元件在细胞分化和衰老过程的作用 背景介绍 基因表达的调控是细胞命运和疾病发生的关键机制之一,而顺式调控元件(cis-regulatory elements, CREs)在这一过程中扮演了重要角色。CREs通过结合多种效应蛋白(如转录因子和核小体)来动态调控基因的表达。然而,现有的研究方法在测量这些效应蛋白在基因组范围内的结合动态时存在局限性,尤其是在单细胞水平上。这导致我们难以全面理解CREs的结构如何与其功能相关联,尤其是在细胞分化和衰老过程中。 为了解决这一问题,来自Broad Institute of MIT and Harvard、Harvard University等机构的研究团队开发了一种名为PRINT的计算方法,能够从染色质可及性数据中识别DNA-蛋白质相...

人工智能与地面点云在森林监测中的应用

人工智能与地面激光雷达点云在森林监测中的应用:学术报告 学术背景 随着全球气候变化和森林资源管理的日益重要,精准林业(Precision Forestry)成为了现代林业管理的关键方向。精准林业依赖于高精度的森林数据采集与分析,而地面激光雷达(Terrestrial LiDAR, TLS)和移动激光雷达(Mobile LiDAR, MLS)技术的进步为森林监测提供了前所未有的细节。然而,处理这些高密度的三维点云数据仍然是一个巨大的挑战,尤其是在个体树木分割、树种分类和森林结构分析等任务中。 传统的方法依赖于手工设计的特征和启发式算法,但这些方法在处理复杂的自然环境和多样化的森林结构时往往表现不佳。近年来,人工智能(Artificial Intelligence, AI),特别是深度学习(De...