基于单细胞多组学数据集的拷贝数变异推断工具基准测试

一、研究背景及意义 在肿瘤学和基因组研究领域,染色体拷贝数异常(Copy Number Alterations, CNAs)是导致癌症发生与进展的关键遗传变异类型。CNAs不仅决定了肿瘤的异质性,而且对早期肿瘤检测、肿瘤亚克隆(subclone)演化分析、耐药机制研究等具有重要意义。传统的检测拷贝数变异的方法主要依赖单细胞DNA测序(scDNA-seq),虽分辨率高,但受限于高昂成本及测序覆盖度低,难以在大规模、通量高的实际应用中广泛开展。 随着单细胞RNA测序(single-cell RNA sequencing, scRNA-seq)技术的普及与数据积累,研究者发现,基于scRNA-seq数据在一定条件下也能够反推出潜在的基因组拷贝数变化,这大大拓展了利用已有转录组数据挖掘基因组结构变异...

蛋白质-蛋白质互作预测的新进展:HSSPPI模型从分层与空间-序列双视角全面解析蛋白互作位点

背景介绍:揭示蛋白互作预测的瓶颈与机遇 蛋白质(Protein)作为生命活动的核心分子,几乎参与了所有生物学过程与细胞功能,包括基因表达、RNA转录、DNA合成以及免疫反应等。蛋白分子之间的相互作用(Protein-Protein Interactions, PPI)以及特定位点上的互动(Protein-Protein Interaction Sites, PPIS)决定了多样且精确的生理活动。例如,药物设计、蛋白功能注释、疾病分子机制探索、以及全局蛋白互作网络构建等,都以高质量的PPI和PPIS信息为基础。 然而,传统基于生物实验(如X射线晶体学、质谱等)对PPI位点进行检测的方法耗时高、成本昂贵,并且面临样品复杂性高和可扩展性不足的问题。随着蛋白数据库的快速扩充及疾病防治需求的日益迫切,...

揭示癌症新的标志性特征:肿瘤神经浸润全景图谱研究学术报道

癌症作为全球重大公共卫生难题,具有复杂的发生发展机制。长期以来,肿瘤微环境(tumor microenvironment,TME)的免疫、炎症、血管生成等过程被广泛关注,被视为肿瘤生物学行为的重要决定因素。近年来,癌症神经科学(cancer neuroscience)成为新兴交叉领域,发现神经系统不仅通过神经介质、递质等调控肿瘤发展,还通过神经-肿瘤细胞的直接或间接互作影响肿瘤的生长、转移与侵袭。尽管诸如“外周神经侵犯(perineural invasion, PNI)”等神经相关现象已受到关注,但系统性量化和评价“神经浸润”在肿瘤疾病中的广泛性、分子特征和临床意义仍处于初级阶段。本文报道正是基于这样的问题意识和科学背景展开,旨在深入探讨神经因素是否可作为肿瘤新标志性特征(cancer ha...

基于Granger因果循环自编码器的时间序列单细胞RNA测序数据推断基因调控网络

一、学术背景与研究动机 近年来,单细胞RNA测序(single-cell RNA sequencing, scRNA-seq)已成为生命科学与医学研究领域极具突破力的技术之一,使得研究者能够以单个细胞为单位,捕捉到众多细胞间转录水平的微妙差异。这项技术极大地丰富了细胞生物学,对理解细胞分化、发育和疾病发生机制具有重要意义。基于scRNA-seq数据,推断基因调控网络(gene regulatory networks, GRNs),进而揭示转录因子与靶基因间复杂的调控关系,已成为当前生物信息学和系统生物学中的关键问题之一。 然而,scRNA-seq数据本身具有高噪声、高稀疏性和“掉落事件”(dropout events)等特点,带来了极大的数据分析挑战。尤其是在分析时间序列单细胞数据(time...

优化复杂形态性状表型的新方法显著提升遗传变异位点的发现力 —— 以人脸三维形态为例

一、学术背景与研究动因 近年来,基因型-表型(Genotype-Phenotype, G-P)关联分析已成为揭示复杂性状遗传基础的核心手段,尤其在人类面部、四肢、骨骼等多维结构性状的研究中获得了快速发展。传统上,G-P分析依赖简单、预设的人体解剖测量指标,或者采用诸如主成分分析(Principal Component Analysis, PCA)等无监督降维技术,抽取如“主成分(principal components)”“特征面(eigen-shapes)”等数据驱动特征。这些方法虽然流行,但并不一定能够选取真正携带丰富遗传信息、具有遗传生物学相关性的表型轴线。换言之,很多PCA得出的特征主轴,虽然能够涵盖大部分形态变异,却并未必在基因层面具备最大化的解释力,容易遗漏关键的遗传信号。 此外...

通过整合因果提示大语言模型与多组学数据驱动的因果推理识别癌症基因

癌症基因的准确识别是癌症基础研究和精准医疗领域的核心难题。近日,Jilin University与Zhejiang Sci-Tech University的研究团队在《Briefings in Bioinformatics》期刊上发表了题为《Cancer gene identification through integrating causal prompting large language model with omics data–driven causal inference》的原创性研究论文。本文完整梳理了该论文的研究背景、学术创新、方法流程、研究结论及其深远意义。 一、学术研究背景 1. 多组学癌症基因识别的需求 癌症作为全球范围内死亡率最高的疾病之一,其发生和进展本质上是一个...