Privacy-Preserving Framework for Genomic Computations via Multi-Key Homomorphic Encryption

Privacy-Preserving Framework for Genomic Analysis: A Study Based on Multi-Key Homomorphic Encryption Academic Background With the reduction in the cost of genome sequencing, the widespread availability of genomic data has opened up new possibilities for personalized medicine (also known as genomic medicine). However, genomic data contains a vast am...

EPICPred: Predicting Phenotypes Driven by Epitope-Binding TCRs Using Attention-Based Multiple Instance Learning

T-cell receptors (TCRs) play a crucial role in the adaptive immune system by recognizing pathogens through binding to specific antigen epitopes. Understanding the interactions between TCRs and epitopes is essential for uncovering the biological mechanisms of immune responses and developing T cell-mediated immunotherapies. However, although the impo...

DeepES: Deep Learning-Based Enzyme Screening for Identifying Orphan Enzyme Genes

Academic Background With the rapid advancement of sequencing technology, scientists have been able to obtain a vast amount of protein sequence data, including many enzyme sequences. However, despite the establishment of large enzyme databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and BRENDA, sequence information for many enzyme...

MostPlas: A Self-Correction Multi-Label Learning Model for Plasmid Host Range Prediction

Plasmids are small, circular, double-stranded DNA molecules that exist independently of chromosomal DNA in bacteria. They facilitate horizontal gene transfer, enabling host bacteria to acquire beneficial traits such as antibiotic resistance and metal resistance. Some plasmids can transfer, replicate, or persist in multiple microorganisms, and these...

Sequence Analysis: DNA Sequence Alignment Using Transformer Models

Academic Background DNA sequence alignment is a core task in genomics, aiming to map short DNA fragments (reads) to the most probable locations on a reference genome. Traditional methods typically involve two steps: first, indexing the genome, followed by efficient searching to locate potential positions for the reads. However, with the exponential...