Sustained Reduction of Essential Tremor with Low-Power Non-Thermal Transcranial Focused Ultrasound Stimulations in Humans

Sustained Reduction of Essential Tremor with Low-Power Non-Thermal Transcranial Focused Ultrasound Stimulations in Humans

Sustained Reduction of Essential Tremor with Low-Power Non-Thermal Transcranial Focused Ultrasound Stimulation in Humans Background Essential Tremor (ET) is one of the most common neurological disorders, primarily characterized by bilateral upper limb action tremor that persists for more than three years. For ET unresponsive to medication, neurosur...

Thresholds and Mechanisms of Human Magnetophosphene Perception Induced by Low Frequency Sinusoidal Magnetic Fields

Threshold and Mechanisms of Magnetophosphene Perception Background The effect of Magnetic Fields (MF) on the human body has long been a hot topic in scientific research. Extremely Low-Frequency Magnetic Fields (ELF-MF) are widespread in daily life, primarily originating from power lines (50⁄60 Hz) and household appliances. These magnetic fields can...

Auditory Cues Modulate the Short Timescale Dynamics of STN Activity During Stepping in Parkinson’s Disease

Patients with Parkinson’s Disease (PD) often experience gait impairments, which severely affect their quality of life. Previous studies have suggested that β-frequency (15-30 Hz) oscillatory activity in the basal ganglia may be associated with gait impairments, but the exact dynamics of these oscillations during the gait process remain unclear. Add...

Intensity-Dependent Effects of TDCS on Motor Learning Are Related to Dopamine

The Intensity-Dependent Effects of Cortical Electrical Stimulation on Motor Learning and the Role of Dopamine Background Introduction Nowadays, non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) are widely used in neuroplasticity research to modulate cognition and behavior. However, optimizing stimulati...

Quantum Coherent Spin in Hexagonal Boron Nitride at Ambient Conditions

Report on the Study of Quantum Coherent Spins in Hexagonal Boron Nitride at Room Temperature Introduction The realization of quantum networks and sensors requires solid-state spin-photon interfaces that possess single-photon emission capabilities and long-lived spin coherence, which can be integrated into scalable devices. Ideally, these devices sh...