通过多任务学习改进儿科低级别胶质瘤的分割

改进通过多任务学习对儿童低级别胶质瘤的分割 背景介绍 儿童脑肿瘤分割是肿瘤容积分析和人工智能算法中的关键任务。然而,这一过程耗时且需要神经放射学专家的专业知识。虽然已有大量研究集中于优化成人脑肿瘤分割,但关于人工智能引导的儿童肿瘤分割研究却凤毛麟角。此外,儿童和成人脑肿瘤的MRI信号特征不同,需要专门为儿童脑肿瘤设计分割算法。因此,本文提出将脑肿瘤的基因变化分类器作为辅助任务添加到主要网络中,通过多任务学习(Deep Multitask Learning, DMTL) 提高分割结果的准确性。 论文来源 这项研究由以下研究人员开展:Partoo Vafaeikia, Matthias W. Wagner, Cynthia Hawkins, Uri Tabori, Birgit B. Ertl-...

基于多参数MRI影像的脑胶质瘤分级预测方法的研究

《基于多参数MRI影像肿瘤内外放射组学特征预测胶质瘤等级》 研究背景 胶质瘤是中枢神经系统最常见的原发性脑肿瘤,占成年恶性脑肿瘤的80%。在临床实践中,治疗决策通常需要根据肿瘤的等级来进行个体化调整。世界卫生组织(WHO)将胶质瘤分为四个等级(I-IV),并将其进一步分类为低级别胶质瘤(LGG,I级和II级)和高级别胶质瘤(HGG,III级和IV级)。准确的胶质瘤分级对于制定治疗方案、实施个性化治疗以及预测预后和生存时间至关重要。目前,胶质瘤等级的诊断主要通过外科活检或组织病理学分析。然而,这种诊断方法具有侵入性且在某些情况下对患者不宜,因此急需一种非侵入性且高准确度的胶质瘤分级系统。 磁共振成像(MRI)已成为放射科医生在过去几年中诊断脑肿瘤的热门非侵入性手段。尽管有经验的放射科医生通过裸...

自注意相似性引导的图卷积网络用于多类型低级别胶质瘤分类研究

自注意相似性引导的图卷积网络用于多类型低级别胶质瘤分类研究

基于自注意力相似性引导的图卷积网络用于多类型低级别胶质瘤分类 一、研究背景 低级别胶质瘤是一种常见的恶性脑肿瘤,由大脑和脊髓中的胶质细胞癌变引起。胶质瘤具有发病率高、复发率高、死亡率高和治愈率低等特点。正确分类多类型低级别胶质瘤对患者的预后至关重要。在诊断上,医生通常利用磁共振成像(MRI)和计算机断层扫描(CT)分析胶质瘤细胞的异柠檬酸脱氢酶(IDH)突变状态。 IDH突变状态是区分野生型和突变型胶质瘤的重要标志。传统上需要通过活检或手术切除来进行免疫组织化学或基因测序,从而确定IDH突变状态。由于活检存在一定风险,因此开发无创预测IDH突变状态的计算机辅助诊断方法具有重要意义,可避免患者接受不必要的手术风险。 二、论文来源 该论文发表于IEEE生物医学与健康信息学期刊(IEEE Jour...

基于切片池化的AI辅助胶质瘤分级算法

基于切片池化的AI辅助胶质瘤分级算法

AI 辅助的基于切片池化的胶质瘤分级影像组学算法 背景介绍 胶质瘤(Glioma)是中枢神经系统中最常见和最具威胁的肿瘤,具有高发病率、高复发率、高死亡率和低治愈率。世界卫生组织(WHO)将胶质瘤分为四级(I、II、III和IV),其中I级和II级被称为低级别胶质瘤(LGG),而III级和IV级被称为高级别胶质瘤(HGG)。高级别胶质瘤是一种更具侵袭性的恶性肿瘤,其预期寿命约为两年。尽管WHO在2016年引入了分子分型,可以排除不敏感的治疗,但胶质瘤的分级仍然是一个重要的诊断标准,因为它决定了治疗方案的选择。 磁共振成像(MRI)是检测和分析胶质瘤的常用成像技术。它是一种无创且快速的方法,同时MRI图像包含了丰富的信息,这些信息仅凭医生的观察很难获取。影像组学(Radiomics)作为人工智...

多模态解耦变分自编码器与博弈论解释用于胶质瘤分级

多模态解缠变分自编码器与博弈理论解释性在胶质瘤分级中的应用 背景介绍 在中枢神经系统中,胶质瘤是最常见的原发性脑肿瘤。根据细胞活动和侵袭性,世界卫生组织(WHO)将其分为I至IV级,其中I和II级称为低级别胶质瘤(LGG),III和IV级称为高级别胶质瘤(HGG)。在临床实践中,治疗决策通常需要针对不同的肿瘤级别进行个性化调整。因此,准确的胶质瘤分级对于治疗决策、个性化治疗以及患者预后的预测至关重要。目前,胶质瘤分级的金标准仍然是通过手术活检或组织病理学分析。然而,这种方法是侵入性的,并且不具有实时性,可能导致癫痫、感染甚至沿穿刺路线的肿瘤转移。因此,开发一种能够在术前无创且及时诊断胶质瘤级别的分级系统具有重要意义。 磁共振成像(MRI)广泛应用于胶质瘤患者的临床术前诊断、治疗决策和预后评估...