神经解剖学教育中的摄影量测扫描

神经解剖学教育中的摄影量测扫描

神经信息学研究:多相机系统下的神经解剖学3D模型摄制 学术背景 中枢神经系统的外科解剖学,包括颅骨和脊柱,具有极其复杂的三维(3D)结构,这使得学习者难以完全理解各结构之间的复杂关系。准确了解这些解剖关系和3D感知对于进行安全的神经外科手术以及减少手术并发症至关重要。目前,教材和图谱仍然是教授人类解剖学和神经外科的标准方法(Rhoton, 2023)。然而,尸体解剖——被视为研究神经外科解剖学的最现实模型(Sotgiu et al., 2020)——成本高昂,并非所有神经外科和解剖学课程中都能普遍获得。因此,对于那些无法接触到实验室学习的学生,一种经济有效的神经解剖学教育方法显得尤为迫切。 论文来源 这项研究论文名为《Photogrammetry Scans for Neuroanatomy...

解决 MRI 协议不合规问题的开源工具 MRQA

MRQA:解决 MRI 协议不合规的广泛问题 背景介绍 近年来,大规模神经影像数据集在研究脑-行为关系中发挥了至关重要的作用,例如阿尔茨海默病神经成像计划(ADNI),人类连接组计划(HCP),少年大脑认知发展(ABCD)研究等。这些数据集通常由多个站点和不同的扫描仪型号采集。然而,跨站点或跨设备的数据收集存在一个重要问题,即成像参数的一致性不足。成像参数的不一致会严重影响数据质量,降低信噪比(SNR)和统计功效,甚至可能使研究结果无效。 传统上,确保MRI扫描协议一致性是一项繁复且手动的任务。这主要是由于DICOM(数字成像和通讯标准)的复杂性和缺乏资源来专门处理这一问题。另外,由于不同站点场所的参数值经常被即兴调整,协议不合规问题通常被忽视。因此,在多个站点进行数据汇总时,一致的成像协议...

基于贝叶斯张量建模的阿尔茨海默病影像分类

基于贝叶斯张量建模的阿尔茨海默病影像分类 引言 神经影像学研究是当代神经科学的重要组成部分,极大地丰富了我们对大脑结构和功能的认识。通过这些非侵入性的视觉化技术,研究人员可以更精确地预测某些神经和精神疾病的风险,进而在早期阶段进行干预和治疗,从而改善患者的健康和生活质量。特别是在阿尔茨海默病(Alzheimer’s Disease,以下简称AD)的研究中,神经影像学提供了宝贵的病理机制见解,能跟踪病情进展,识别早期症状并区分其他导致痴呆的原因。 然而,在处理神经影像数据时会面临多个重大挑战,例如数据空间依赖性、高维度及噪声,并且往往难以在异构条件下识别合适的神经生物标志物。为了应对这些复杂的影像数据问题,研究者提出了多种统计和机器学习方法,其中包括基于影像特征的分类模型。 尽管现有的方法有着...

使用PED算法识别自闭症谱系障碍的诊断生物标志物

使用PED算法识别自闭症谱系障碍的诊断生物标志物

通过PED算法识别自闭症谱系障碍的诊断生物标志物 在神经信息学领域,自闭症谱系障碍(ASD)的研究多集中于脑部区域之间的双向连接关系,而较少涉及脑部区域的高阶相互作用异常。为了探讨脑区的复杂关系,作者团队采用了部分熵分解(Partial Entropy Decomposition, PED)算法,通过计算三脑区(triads)的高阶相互依赖性来捕捉高阶相互作用。本文提出了一种基于PED和替代检验方法的方法,检验单个脑区对三重脑区的影响,发现了关键的三脑区。进一步采用超图模块优化算法揭示了高阶脑结构,在ASD中,右丘脑与左丘脑的连接相比于典型对照(TC)更松散。关键的冗余三脑区(左小脑、左楔前叶和右下枕回)的相互作用表现出显著的衰减,而协同的关键三脑区(右小脑、左中央后回和左舌回)的相互作用明...

利用fMRI指导TMS靶点:3T和1.5T fMRI指标的可靠性和敏感性

利用fMRI指导TMS靶点:3T和1.5T fMRI指标的可靠性和敏感性

fMRI   TMS   3T   1.5T   可靠性   敏感性   抑郁症  

利用fMRI指导TMS目标选择:3T和1.5T fMRI指标的可靠性和灵敏度 [DOI: 10.1007/s12021-024-09667-5], 文章发表于《Neuroinformatics》 背景介绍 功能性磁共振成像(fMRI)的早期应用主要集中在推断认知过程上。然而,现代医学正在逐渐将其应用于更多的临床用途,如术前规划和疾病鉴别。在反复经颅磁刺激(rTMS)治疗的临床应用中,fMRI已显示出优化TMS目标选择和提高治疗效果的潜力。特别是对主要抑郁症(MDD)患者,美国食品药品监督管理局(FDA)已经批准了一个fMRI指导的个体化治疗协议。然而,目前大多数研究都集中在3T扫描仪上,而1.5T MRI在许多基层医院中更为常见,因此对1.5T和3T fMRI指标的系统评估可能为fMRI指导...