一种磁性粒子成像的微创成像和传感方法及其植入式生物电子电路

基于磁性粒子成像的微创成像和传感方法及其植入式电子电路的应用 学术背景 在现代医学中,微创和生物相容性的植入式生物电子电路被广泛用于长期监控体内的生理过程。然而,这些设备在体内成像和同时提取传感器信息的方法依旧稀缺且成本高。磁性粒子成像(Magnetic Particle Imaging,MPI)因其零背景信号、高对比度、高灵敏度和定量成像能力,成为解决这一问题的理想选择。与增大组织深度而不被吸收的磁信号不同,MPI不涉及辐射剂量,提供了安全有效的成像途径。 论文来源 这篇论文题为“基于磁性粒子成像的微创成像和传感方法及其植入式电子电路的应用”,由Zhiwei Tay, Han-Joon Kim, John S. Ho和Malini Olivo等作者完成。论文发表在2024年5月的IEEE ...

通过互相增强的跨模态图像生成与配准方法进行未对齐PAT和MRI图像的无监督融合

通过互相增强的跨模态图像生成与配准方法进行未对齐PAT和MRI图像的无监督融合 背景和研究目的 近年来,光声断层成像(Photoacoustic Tomography, PAT)和磁共振成像(Magnetic Resonance Imaging, MRI)作为前沿的生物医学成像技术在临床前研究中广泛应用。PAT能够提供高光学对比度和深层成像,但软组织对比度较差;而MRI具有优异的软组织成像能力,但时间分辨率较低。尽管多模态数据融合方面取得了一定进展,但由于图像未对准和空间失真的问题,PAT和MRI图像融合仍具有挑战性。 为了解决这些问题,本文作者提出了一种称为PAMRFuse的分阶段深度学习框架,重点在于未对准的PAT和MRI图像融合。该框架包括一个多模态到单模态的配准网络,用于准确对准输入...

面向医学图像分割的模型异质半监督联邦学习

面向医学图像分割的模型异质半监督联邦学习

医学影像分割的模型异质半监督联邦学习 背景介绍 医学图像分割在临床诊断中具有至关重要的作用,它帮助医生识别和分析病情。然而,该任务通常面临敏感数据、隐私问题及昂贵的标注费用等挑战。尽管当前研究主要聚焦于个性化协作训练医学分割系统,但忽视了获取分割标注是耗时且费力的。如何在保持本地模型个性化的同时平衡标注成本和分割性能,已成为研究的一个重要方向。因此,本研究引入了一种新颖的模型异质半监督联邦学习框架。 论文来源 这篇论文题为“Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation”,由Yuxi Ma、Jiacheng Wang、Jing Yang和Liansheng Wang共同...

半监督超声视频中的甲状腺结节检测

半监督超声视频中的甲状腺结节检测

半监督超声视频中甲状腺结节检测的研究报告 研究背景 甲状腺结节是常见的甲状腺疾病,甲状腺结节的早期筛查和诊断通常依赖于超声检查,超声检查是一种常见的无创检测方法,可用于检测包括甲状腺结节、乳腺癌和动脉斑块在内的多种疾病。然而,由于甲状腺结节在超声图像中的分辨率低、病变形态不规则且复杂等原因,超声检查高度依赖放射科医生的经验,误诊和漏诊时有发生,特别是在欠发达地区和国家更为常见。因此,开发基于计算机辅助诊断(Computer-Aided Diagnosis,CAD)的自动化精准方法显得尤为重要。 近年来,深度学习技术被引入到超声图像的计算机辅助诊断中。尽管现有的甲状腺结节检测方法在静态超声图像上取得了一些进展,但这些方法未能充分利用诊断过程中随时间变化的空间和时间信息。在临床筛查和诊断过程中,...

半监督医学图像分割的双重监督网络

半监督医学图像分割的双重监督网络

研究背景和动机 医学图像分割在解剖结构和病变区域的图像分析以及临床诊断中具有重要意义。然而,现有的全监督学习方法依赖于大量标注数据,而医学图像的像素级标注数据获取成本高昂且耗时。为了减轻对标注数据的依赖,半监督学习(SSL)方法逐渐兴起。尽管现有的SSL方法如mean teacher(MT)框架已经取得了不错的效果,但仍然存在诸多局限性。因此,本研究提出了一种双向监督网络(bilateral supervision network,BSNet),以更好地利用无标注的样本,从而提高半监督医学图像分割的性能。 文章来源 本文由Along He、Tao Li、Juncheng Yan、Kai Wang和Huazhu Fu撰写。作者分别来自天津大学网络与数据安全技术重点实验室、南开大学计算机学院、H...