用于膳食营养和人类健康问答的综合知识图谱

背景与研究动机 众所周知,食物营养与人类健康密切相关。科学研究表明,膳食营养不当与200多种疾病有联系,尤其在考虑肠道微生物代谢的情况下,食物营养成分与疾病之间的复杂交互作用更是难以系统化和实际应用。正因为如此,开发一个整合全面知识并提供实用应用的框架变得十分迫切,以支持获取饮食相关的查询。 研究来源 本文是一项由Chengcheng Fu、Xueli Pan、Jieyu Wu、Junkai Cai、Zhisheng Huang、Frank Van Harmelen、Weizhong Zhao、Xingpeng Jiang和Tingting He共同撰写的研究。这项研究的参与者来自湖北省人工智能与智能学习重点实验室、华中师范大学计算机科学学院以及Vrije Universiteit Amst...

通过时间知识图谱和医学本体预测未来疾病

预测未来疾病:时间知识图谱和医学本体的融合 电子健康记录(Electronic Health Records,EHRs)是现代医疗机构不可或缺的工具。它们记录了患者的详细健康历史,包含人口统计数据、药物、实验室结果和治疗计划。这些数据不仅可以改善医疗服务之间的衔接和协调,还能帮助医疗提供者发现健康趋势并做出数据驱动的决策,从而提高患者的整体护理质量。然而,EHRs中存储的大部分数据是非结构化的,特别是由临床医生撰写的描述患者健康状况的自由文本数据,这给信息提取和有效利用带来了巨大的挑战。 为了应对这一挑战,许多研究尝试通过自然语言处理(Natural Language Processing,NLP)技术从非结构化数据中提取相关信息并将其链接到医学本体。最近的研究中,知识图谱(Knowledg...

双层交互感知的异构图神经网络用于药物包推荐

医学包推荐系统研究:基于双层次交互意识的异构图神经网络 随着电子健康记录(electronic health records, EHRs)在医疗领域中的广泛应用,如何从中挖掘潜在的、有价值的医学知识来支持临床决策,成为深度学习技术的重要研究方向之一。个性化医学包推荐是这一领域的重要任务之一,其目标是利用大量医疗记录帮助医生为每位患者选择更安全、有效的药物包。然而,现有的医学包推荐方法主要将任务建模为多标签分类或序列生成问题,主要关注的是个体药物与其他医学实体之间的关系,却普遍忽视了药物包与其他医学实体之间的交互,从而可能导致推荐的药物包不完整。此外,现有方法所考虑的医学常识知识相对有限,使得深入研究医生的决策过程变得非常困难。 来源概述 本文由山东大学软件学院的研究人员Fanglin Zhu...

基于知识增强图主题Transformer的可解释生物医学文本摘要

基于知识增强的图主题Transformer在可解释生物医学文本摘要中的应用 研究背景 由于生物医学文献发表量持续增加,自动生物医学文本摘要任务变得愈加重要。2021年,仅在PubMed数据库中就发表了1,767,637篇文章。现有的基于预训练语言模型(Pre-trained Language Models,简称PLMs)的摘要方法虽然提升了摘要性能,但在捕捉领域特定知识和结果可解释性方面存在显著局限。这可能导致生成的摘要缺乏连贯性,包括冗余句子或重要领域知识的遗漏。此外,变压器模型的黑箱特性使得用户难以理解摘要生成的原因和方式,因此在生物医学文本摘要中,包含领域特定知识和可解释性对提高准确性和透明度至关重要。 研究来源 本文的论文由Qianqian Xie、Prayag Tiwari(IEE...

结合多重先验知识的图神经网络用于多组学数据分析

结合多重先验知识的图神经网络用于多组学数据分析

医学多组学数据分析中的多重先验知识图神经网络 背景介绍 精确医学是未来医疗保健的重要领域,因为它为患者提供个性化的治疗方案,从而改善治疗效果并降低成本。例如,由于乳腺癌患者存在复杂的临床、病理和分子特征,相同的治疗可能表现出不同的效果。随着生物医学技术的高速发展,疾病的表征可以通过多组学数据来实现。多组学方法相较单组学方法能够在多个数据间捕捉一致和互补的信息,从而建立更加准确和深入的模型。例如,癌症基因组图谱(The Cancer Genome Atlas, TCGA)提供了包括mRNA表达、DNA甲基化和拷贝数变异(Copy Number Variation, CNV)在内的多组学数据。因此,在精确医学的各类任务中引入多组学数据变得必要,这些任务包括药物反应预测、基因发现和生存分析等。 作...