CIGNN: 基于因果关系和图神经网络的无袖带连续血压估计框架

CIGNN: 基于因果关系和图神经网络的无袖带连续血压估计框架 背景介绍 根据世界卫生组织(WHO)的数据,全球约有11.3亿人受到高血压的影响,预计到2025年这一数字将增加到15亿。高血压是心血管疾病的一个重要风险因素,这包括心脏病和中风,这些都是全球主要的死亡原因。高血压的普及进一步增加了痴呆和残疾的负担,因此,预防和管理高血压对于改善全球健康结果至关重要。 连续血压(BP)测量能够为高血压的诊断和预防提供丰富的信息。通过连续监测血压,我们可以更全面地了解患者的血压模式和趋势,这可以指示是否需要治疗或调整当前的治疗方案。此外,连续血压监测相比传统间歇性血压测量有更多优势,因为血压可能会受到诸如压力、体力活动和药物依从性等因素的影响。无袖带连续血压测量利用可穿戴生理传感器的优势,能够实现...

基于图的条件生成对抗网络用于生成合成功能性脑网络诊断重度抑郁症

基于图的条件生成对抗网络用于生成合成功能性脑网络诊断重度抑郁症

基于图的条件生成对抗网络用于生成合成功能性脑网络诊断重度抑郁症 研究背景: 重度抑郁症(Major Depressive Disorder, MDD)是一种广泛存在的精神障碍,影响数百万人的生活,并且对全球健康构成重大威胁。研究表明,通过静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)提取的功能连接性(functional connectivity, FC)能够揭示与MDD相关的功能连接模式,在精准诊断中起到重要作用。然而,由于相关数据的有限性,为稳健的MDD诊断带来挑战。为应对这一挑战,近年来一些研究尝试使用深度神经网络(Deep Neural Networks, DNN)架构来构建生成对抗网络...

罗兰癫痫中丘脑皮层连接减少

罗兰癫痫中丘脑皮层连接减少

罗兰蒂克型癫痫的丘脑皮层神经连接减少 罗兰蒂克型癫痫(Rolandic Epilepsy, RE),亦即带有中颞棘波的自限性癫痫(self-limited epilepsy with centrotemporal spikes, SELECTS),是最常见的局部发育性癫痫脑病。这种癫痫通常伴随短暂的轻度至严重的认知症状,以及由感觉运动皮层引发的睡眠栓道棘波和癫痫发作。尽管大多数患有RE的儿童在活动期内能够通过正式测试检测到认知缺陷,这些癫痫发作和认知问题最终会自限并消失。然而,仍有许多问题未得到解答,例如:具体的神经机制是什么,哪些因素决定了症状的消失以及这种癫痫的长期影响是什么。正是在这种背景下,本研究旨在更深入地探索解决罗兰蒂克型癫痫症状的神经连接变化。 研究来源 本研究由位于波士顿的多...

轻度认知障碍的功能连接变化:M/EEG研究的荟萃分析

轻度认知障碍中的功能性连接变化:M/EEG研究的荟萃分析 背景与目的 阿尔茨海默病(Alzheimer’s disease, AD)是一种以记忆丧失和认知功能障碍为特征的神经退行性疾病。AD是老年人认知障碍的最主要原因,约占全球病例的60%至80%。随着年龄的增长,阿尔茨海默病的患病率显著增加,65岁到74岁人群中患病率为3%,75岁到84岁人群为17%,而85岁及以上人群则达到32%。因此,阿尔茨海默病已成为全球公共健康的重大问题,对卫生系统和社会成本产生了巨大影响。 AD的神经病理学变化包括胞外的β-淀粉样蛋白(Aβ)堆积和过度磷酸化的tau蛋白(p-tau)引起的神经纤维缠结,这些变化导致神经元死亡,并最终引起脑萎缩和突触功能障碍。最早的病变在内嗅皮层和海马区开始,随着疾病的进展,逐渐...

交叉频率耦合对利用静息态EEG信号评估抑郁严重性的影响

背景介绍 抑郁症,尤其是主要抑郁障碍(Major Depressive Disorder,简称MDD),是一种广泛而致残的心理疾病,常被形容为“心理感冒”。许多患有MDD的人会经历持续的悲伤、无望感、认知障碍和对日常活动的失去动机等症状,严重影响个人和社会生活。在全球范围内,抑郁症的影响极其严重,超过3.4亿人受到不同程度的抑郁症的困扰。此外,新冠疫情及其防控措施,如社交隔离和悲伤情绪等,更是加剧了抑郁症的普遍性。据预测,到2030年,抑郁症将成为导致残疾的首要原因,超过心血管疾病,而每年由抑郁症导致的死亡人数预计将达到一百万。鉴于其高患病率、高致残率、高死亡率和高复发率,及时发现和干预抑郁症尤为重要。 传统上,抑郁严重程度的评估依赖于临床评估和面试,如Beck抑郁量表(BDI-II)和汉密...

基于丘脑下核和皮层活动区分帕金森病的静止震颤与自愿手部运动

帕金森病(Parkinson’s disease, PD)是一种常见的神经退行性疾病,其主要症状包括静止性震颤、运动迟缓和肌强直。深部脑刺激(Deep Brain Stimulation, DBS)已被广泛用于治疗帕金森病的运动症状(Krauss et al., 2021)。然而,DBS治疗也存在显著的副作用,其中大部分是由刺激扩展到DBS目标结构周围的区域导致的(Koeglsperger et al., 2019)。为减少这种副作用,研究人员提出了一种适应性深部脑刺激(adaptive DBS, aDBS)方案,通过实时监控病人的当前运动状态来调整DBS的强度和时机(Little et al., 2016; Piña-Fuentes et al., 2017; Tinkhauser et ...

基于卷积神经网络的耐药癫痫早期预测

研究背景及研究目的 癫痫是一种自发性且严重的神经系统疾病,表现为反复发作,全球有大约5000万人受其影响[1]。尽管近年来抗癫痫药物(ASM)的发展有所进步,药物难治性癫痫(Drug-Resistant Epilepsy,DRE)仍影响着20%到30%的癫痫患者[1-3]。DRE患者不仅面临巨大的经济、社会和心理负担,但需长时间的药物试验才能确诊。早期识别高风险患者,可以为施行如癫痫手术、神经调控或生酮饮食等治疗方式提供更早的干预。 以往的研究已指出DRE的风险因素包括:早期发病、高频率发作、脑电图(EEG)异常、神经缺陷、认知障碍、创伤史和颅内结构病变等[5-9]。然而,对于新诊断的癫痫患者,这些因素的重要性尚不明确,因此需要综合工具来早期识别高风险患者。 脑电图在癫痫领域扮演着不可或缺的...

单细胞皮层形态脑网络:表型关联和神经生物学基础

研究背景与问题 陈述 本文是一项关于单一被试形态学脑网络在表型关联性及神经生物学基础方面的研究。该研究结合了多模态和多尺度数据,揭示了形态学脑网络与性别的差异、其作为个体特异性标志的潜力以及其与基因表达、层特异性细胞结构和化学结构的关系。这些发现深化了我们对单被试形态学脑网络作用和起源的理解,并为其在未来个性化脑联结组研究中的应用提供了有力依据。 形态学脑网络指的是基于结构性磁共振成像(structural magnetic resonance imaging,简写为sMRI)估算的脑区域之间的形态学关系。最早的研究通过计算一个群体中某形态学指标(如灰质体积,皮层厚度或表面积)的区域间协方差来估算这些关系,但这种基于群体的方法忽略了个体间的差异,导致了形态学脑网络所揭示的神经生物学意义不明确...

基于置换传输熵的精神分裂症网络信息交互研究

精神分裂症脑磁图基于置换传输熵的网络信息交互研究 学术背景介绍 精神分裂症(Schizophrenia, SCZ)是一种精神疾病,特点是持久的妄想和幻觉、混乱的思维和不一致的行为,常常导致对现实的感知显著障碍。随着现代神经成像技术的快速发展,大量的数据集支持了神经和精神疾病的研究。磁脑电图(Magnetoencephalography, MEG)作为一种神经成像技术,因其高空间和时间分辨率,能够捕捉到大脑电磁信号的非线性特征,因而被应用于探索精神分裂症(SCZ)的信息交互。 文章来源 这篇论文题为《Networked information interactions in schizophrenia magnetoencephalograms based on permutation tra...

基于改进的集合经验模态分解的EEG脑功能网络用于焦虑分析和检测

基于改进的集合经验模态分解的脑功能网络用于焦虑分析和检测 学术背景及研究目的 随着现代生活压力的增加,焦虑症(Anxiety)作为一种常见神经系统疾病,正日益成为全球公共卫生领域亟待解决的问题。焦虑症不仅表现在精神障碍上,还涉及注意力、记忆和学习等认知过程的异常表现。COVID-19疫情的爆发进一步增加了焦虑症的患病率。据统计,焦虑症在12个月内的发病率为男性4.80%,女性5.20%。然而,焦虑的病因至今尚未明确,且自愈的概率较低。这些复杂性和不确定性使得早期检测和干预变得尤为重要。然而,传统的焦虑检测方法依赖于面对面访谈和自我评估,不仅费时费力,还受到医生专业经验和患者自我评估的主观因素影响。因此,有必要探索一种客观且准确的焦虑分析和检测方法。 在众多生理信号中,脑电图(EEG)因其高时...