Reactive Oxygen Species Regulation by NCF1 Governs Ferroptosis Susceptibility of Kupffer Cells to MASH

NCF1 Regulates Reactive Oxygen Species Vulnerability to Ferroptosis in Kupffer Cells and Its Impact on MASH Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), has a global prevalence of up to 25.2% and is a leading cause of chronic liver disease in adults and c...

Short-Term Cold Exposure Induces Persistent Epigenomic Memory in Brown Fat

Short-term Cold Exposure Induces Persistent Epigenomic Memory in Brown Adipose Tissue Background Brown Adipose Tissue (BAT) is the primary non-shivering thermogenic organ in mammals that dissipates chemical energy as heat under cold stimuli. BAT is characterized by a high density of mitochondria containing Uncoupling Protein 1 (UCP1), which generat...

Nicotinamide Metabolism Face-off Between Macrophages and Fibroblasts Manipulates the Microenvironment in Gastric Cancer

Macroscopic and Microscopic Mechanisms of Nicotinamide Metabolism Antagonism: Manipulation of the Gastric Cancer Microenvironment Background Introduction Gastric cancer (GC) is a type of cancer characterized by a unique and heterogeneous tumor microenvironment (TME). Despite advances in immune checkpoint blockade (ICB) therapy for gastric cancer, n...

A Microbial Metabolite Inhibits the HIF-2α-Ceramide Pathway to Mediate the Beneficial Effects of Time-Restricted Feeding on MASH

A Microbial Metabolite Mediates the Beneficial Effects of Time-Restricted Feeding on MASH by Inhibiting the HIF-2A-Ceramide Pathway Introduction Background: Metabolic Dysfunction-Associated Steatotic Liver Disease/Metabolic Dysfunction-Associated Steatohepatitis (MASLD/MASH) is a major health problem affecting a quarter of the global population. MA...

Dopaminylation of endothelial TPI1 suppresses ferroptotic angiocrine signals to promote lung regeneration over fibrosis

Dopamine Modification of TPI1 Inhibits Ferroptosis Signaling in Vascular Endothelial Cells, Promoting Lung Regeneration and Inhibiting Fibrosis Background The regenerative capability of the lung enables it to restore its original functional tissue after injury. However, if this regenerative process is disrupted, it often leads to maladaptive repair...

Electron Transport Chain Inhibition Increases Cellular Dependence on Purine Transport and Salvage

Inhibition of the electron transport chain increases cell dependence on purine transport and salvage Research Background The electron transport chain (ETC) is a key mechanism in mitochondria responsible for energy generation, playing an important role in maintaining cellular homeostasis and growth. However, it remains unclear how cells adjust their...