中性粒细胞与肿瘤细胞物理相互作用促进乳腺癌的侵袭性

学术背景 乳腺癌是全球女性中最常见的恶性肿瘤之一,其发病机制复杂,涉及多种细胞类型和信号通路的相互作用。近年来,肿瘤微环境(Tumor Microenvironment, TME)在癌症进展中的作用逐渐受到关注。中性粒细胞(Neutrophils)作为免疫系统的重要组成部分,在肿瘤微环境中的功能尚不完全清楚。虽然已有研究表明中性粒细胞在某些情况下可以促进肿瘤生长和转移,但其在乳腺癌中的具体作用机制仍不明确。因此,深入研究中性粒细胞与肿瘤细胞之间的相互作用,对于揭示乳腺癌的进展机制并开发新的治疗策略具有重要意义。 论文来源 本论文由来自以色列特拉维夫大学(Tel Aviv University)的Sandra Camargo、Ori Moskowitz等研究人员共同完成,合作单位包括荷兰皇家艺...

一种新的图片模糊集相似性度量及其应用

学术背景 在决策分析、模式识别和医疗诊断等领域,模糊集理论为处理不确定性和模糊性提供了重要的数学工具。传统的模糊集(Fuzzy Set, FS)和直觉模糊集(Intuitionistic Fuzzy Set, IFS)在处理复杂数据时存在一定的局限性,尤其是在需要考虑中立性(neutrality)的情况下。图片模糊集(Picture Fuzzy Set, PFS)作为一种扩展的模糊集理论,引入了中立性这一维度,能够更全面地描述现实世界中的模糊信息。然而,现有的PFS相似度度量方法在处理某些问题时存在不合理的结果,例如无法满足公理要求、计算不同PFS之间的相似度时产生矛盾,以及在模式分类中表现不佳。为了解决这些问题,本文提出了一种基于逆切函数的新型PFS相似度度量方法,并展示了其在分类和医疗诊...

基于EPDTNet + -EM的医学图像诊断高级迁移学习与子网架构

学术背景 在当今的医疗环境中,医学影像在疾病诊断、治疗规划和健康管理中扮演着至关重要的角色。然而,传统的医学影像分析方法存在诸多挑战,如过拟合(overfitting)、计算成本高、泛化能力有限以及噪声、尺寸和形状变化等问题。这些挑战导致医学影像的分类和检测精度受限,影响了临床决策的准确性和效率。 为了应对这些挑战,研究者们提出了多种基于机器学习和深度学习的医学影像分析方法。然而,这些方法在处理复杂数据集时仍存在局限性,尤其是在计算效率和分类精度方面。因此,本文提出了一种名为EPDTNet+-EM(Efficient Parallel Deep Transfer Subnet + Explainable Model)的新型医学影像处理框架,旨在通过增强的迁移学习和并行子网架构,提高医学影像中...

利用EEG数据增强痴呆症检测的脑叶生物标志物研究

背景介绍 痴呆症是一种全球性的健康问题,严重影响患者的生活质量,并给医疗系统带来巨大负担。阿尔茨海默病(Alzheimer’s Disease, AD)和额颞叶痴呆(Frontotemporal Dementia, FTD)是痴呆症的两种常见类型,它们的症状有重叠,导致准确诊断和针对性治疗开发尤为困难。早期检测和准确诊断对于有效管理痴呆症至关重要。传统的诊断方法,如临床评估和神经影像技术(MRI、PET扫描),虽然有效,但成本高、耗时长且不易普及。因此,研究人员开始探索非侵入性、成本效益高的替代方法,如脑电图(Electroencephalography, EEG)。 EEG通过头皮上的电极捕捉大脑的电活动,具有高时间分辨率、成本低且易于使用的特点。痴呆症患者的大脑功能变化可以通过EEG信号...

MediVision:通过监督学习分类和Grad-CAM可视化赋能结直肠癌诊断与肿瘤定位

学术背景 结直肠癌(Colorectal Cancer, CRC)是全球范围内最常见的癌症之一,尤其在50岁以上人群中发病率显著增加。早期检测和准确诊断是提高患者生存率的关键。然而,传统的结直肠癌筛查方法,如结肠镜检查,依赖于医生的经验和视觉判断,存在一定的主观性和误诊风险。近年来,人工智能(Artificial Intelligence, AI)和深度学习(Deep Learning, DL)技术在医学影像分析中的应用为结直肠癌的自动化诊断提供了新的可能性。然而,现有的AI模型在图像特征提取和模型解释性方面仍存在不足,尤其是在处理不同成像条件下的图像时,模型的泛化能力和透明度亟待提高。 为了解决这些问题,研究者开发了Medivision系统,该系统结合了卷积神经网络(Convolution...

A2DM模型:基于时间-频率域融合的EEG伪迹去除增强方法

学术背景 脑电图(Electroencephalogram, EEG)是研究大脑活动的重要工具,广泛应用于神经科学、临床诊断和脑机接口等领域。然而,EEG信号在采集过程中容易受到多种伪迹(artifacts)的干扰,例如眼电伪迹(Electrooculography, EOG)和肌电伪迹(Electromyography, EMG)。这些伪迹会显著降低EEG信号的质量,进而影响后续的分析和应用。尽管已有一些方法用于去除单一类型的伪迹,但在处理多种伪迹同时存在的情况时,现有方法往往表现不佳。因此,开发一种能够统一去除多种伪迹的模型成为当前研究的重要挑战。 Haoran Li等人针对这一问题,提出了一种基于伪迹表示的EEG去噪模型,称为A2DM(Artifact-Aware Denoising ...