基于切片池化的AI辅助胶质瘤分级算法

基于切片池化的AI辅助胶质瘤分级算法

AI 辅助的基于切片池化的胶质瘤分级影像组学算法 背景介绍 胶质瘤(Glioma)是中枢神经系统中最常见和最具威胁的肿瘤,具有高发病率、高复发率、高死亡率和低治愈率。世界卫生组织(WHO)将胶质瘤分为四级(I、II、III和IV),其中I级和II级被称为低级别胶质瘤(LGG),而III级和IV级被称为高级别胶质瘤(HGG)。高级别胶质瘤是一种更具侵袭性的恶性肿瘤,其预期寿命约为两年。尽管WHO在2016年引入了分子分型,可以排除不敏感的治疗,但胶质瘤的分级仍然是一个重要的诊断标准,因为它决定了治疗方案的选择。 磁共振成像(MRI)是检测和分析胶质瘤的常用成像技术。它是一种无创且快速的方法,同时MRI图像包含了丰富的信息,这些信息仅凭医生的观察很难获取。影像组学(Radiomics)作为人工智...

基于知识蒸馏的轻量级卷积神经网络用于无创胶质瘤分级

非侵入性胶质瘤分级研究综述:基于知识蒸馏的轻量级卷积神经网络 背景介绍 胶质瘤是中枢神经系统的主要肿瘤,早期检测非常重要。世界卫生组织(WHO)将胶质瘤分为Ⅰ至Ⅳ级,Ⅰ和Ⅱ级为低级胶质瘤(LGG),Ⅲ和Ⅳ级为高级胶质瘤(HGG)。准确分类胶质瘤对于生存率评估至关重要。 磁共振成像(MRI)是医学领域诊断和治疗胶质瘤的常用方法。目前,许多学者应用机器学习和深度学习方法进行胶质瘤分类。例如,Zacharaki等人成功应用支持向量机(SVM)算法在MRI图像中分类胶质瘤。而Fatemeh等人采用卷积神经网络(CNN)对MRI图像中的胶质瘤进行分类。遗憾的是,这些研究多集中在提高分类精度,但高参数的CNN架构难以在实际医疗环境中应用。此外,由于胶质瘤数据集较小,他们只能使用具有较少参数的CNN,因而...

脑胶质瘤分割的上下文感知网络

脑胶质瘤分割的上下文感知网络

脑胶质瘤分割的上下文感知网络研究报告 脑胶质瘤是一种常见的成人脑肿瘤,它对健康有严重的损害,并且具有高死亡率。为了提供早期诊断、手术规划和术后观察的充分证据,多模态磁共振成像(MRI)已经广泛应用于该领域。本文研究的目的是在脑胶质瘤的自动化分割中纳入上下文信息,这在处理局部模糊性方面提供了基本线索。 研究背景 先前的研究表明,基于深度神经网络的方法在脑胶质瘤分割中显示了很有希望的技术。然而,这些方法缺乏强有力的策略来结合肿瘤细胞及其周围的上下文信息。已有的自动分割方法虽然提高了分割精度,但仍然存在局部模糊性问题,没有充分考虑肿瘤细胞与其周围环境的关系。 论文来源 该研究由Zhihua Liu, Lei Tong, Long Chen, Feixiang Zhou, Zheheng Jiang...

近红外窗口IIA/IIB荧光成像在胶质瘤手术中的临床研究

近红外窗口IIA/IIB荧光成像在胶质瘤手术中的临床研究

《IEEE生物医学工程汇刊》2022年8月,第69卷,第8期,首次临床研究:近红外窗口IIA/IIB荧光成像在胶质瘤精准手术切除中的应用 曹彩光、金泽萍、史晓菁、张哲、肖安琪、杨君英、计楠、田捷(IEEE会员)、胡振华(IEEE高级会员) 导言 在生物医学研究领域,荧光成像的高敏感性、高空间分辨率、实时成像能力和操作方便性使其受到广泛关注。本研究针对近红外窗口II(NIR-II,1000-1700纳米)成像技术在临床应用中的价值进行探索,以指导胶质瘤手术中切除瘤体的作用。作者结合了新开发的成像设备和术中图像融合方法,致力于提高手术的准确性,减少术中出血量,并最大限度地切除肿瘤。 文章来源 本研究由曹彩光、金泽萍、史晓菁、张哲、肖安琪、杨君英、计楠、田捷、胡振华进行。他们分别隶属于中科院自动化...

近红外窗口II荧光引导高等级胶质瘤手术延长患者无进展生存期

近红外窗口II荧光引导高等级胶质瘤手术延长患者无进展生存期

近红外窗口II荧光影像引导手术延长高级别胶质瘤患者的无进展生存期 研究背景 高级别胶质瘤(HGG)是中枢神经系统中最常见的恶性原发性肿瘤,其中胶质母细胞瘤(GBM)预后最差。为了改善GBM患者的治疗效果,提高术中肿瘤切除率,减少术后复发,研究者们开展了基于近红外窗口II(NIR-II)荧光影像的手术引导策略研究。NIR-II荧光影像具有组织自发荧光低、渗透深度大的特性,有望提高肿瘤切除的精确性与安全性。 论文信息 本项研究由夏晓静博士、张哲博士等人共同完成,他们分别隶属于中国科学院自动化研究所分子影像重点实验室等多个研究机构。研究成果发表在 IEEE Transactions on Biomedical Engineering (Vol. 69, No. 6, June 2022) 杂志上。...