AAV介导的曲妥珠单抗中枢神经系统递送用于EGFR2阳性脑转移瘤

AAV介导的曲妥珠单抗中枢神经系统递送用于EGFR2阳性脑转移瘤 背景介绍 在乳腺癌治疗中,人表皮生长因子受体2(HER2)+ 的肿瘤表现出更为侵略性的特征,这给临床治疗带来了显著挑战。自1998年曲妥珠单抗(Trastuzumab,商品名赫赛汀®)获得批准以来,该药已显著改善HER2+ 乳腺癌患者的整体生存率。然而,对于发展为中枢神经系统(CNS) 的HER2+脑转移病例,由于存在脑血屏障及其他因素的影响,曲妥珠单抗在脑脊液中的半衰期较短(2-4天),传统的系统性抗HER2抗体治疗效果有限。因此,有必要寻求新的治疗途径来靶向HER2+ CNS疾病。 研究来源 本文的研究由Marcela S. Werner、Shweta Aras、Ashleigh R. Morgan等来自宾夕法尼亚大学佩雷...

使用多波长激发的荧光光谱法稳健估计荧光团的显式基线模型

研究背景 荧光光谱是一种广泛应用于识别和量化荧光物质(荧光团)的方法。然而,当材料中包含其他荧光团(基线荧光团)时,量化感兴趣的荧光团变得具有挑战性,特别是当基线的发射光谱未明确定义且与目标荧光团的发射光谱重叠时。为了准确区分并量化这些荧光物质,研究人员提出了基于多波长激发荧光光谱的新方法。这项研究的主要目标是解决基线荧光干扰这一问题,并提供一种无需先验假设的稳健估计算法。 论文来源 这篇名为《An Explicit Estimated Baseline Model for Robust Estimation of Fluorophores Using Multiple-Wavelength Excitation Fluorescence Spectroscopy》的论文,作者包括A. Ga...

多级特征探索与融合网络用于MRI中IDH状态的预测研究

多级特征探索与融合网络用于MRI中IDH状态的预测研究 研究背景 胶质瘤是成年人中最常见的恶性原发性脑肿瘤。根据2021年世界卫生组织(WHO)对肿瘤的分类,基因型在肿瘤亚型划分中具有重要意义,尤其是异柠檬酸脱氢酶(IDH)基因型在诊断胶质瘤时极为重要。临床研究表明,携带IDH突变的胶质瘤通过特定的表观遗传变异特征驱动,影响酶活性、细胞代谢和生物特性;相较于携带IDH野生型的胶质瘤,携带IDH突变的胶质瘤对替莫唑胺更敏感,预后更好。目前,IDH状态的确定主要依赖于在侵入性手术后对组织标本进行基因测序或免疫组织化学分析。然而,侵入性操作可能延误最终治疗决策,甚至导致肿瘤转移。因此,迫切需要通过非侵入性的方法在术前预测IDH状态(IDH prediction),以便为胶质瘤患者制定适当的治疗方案...

基于正则化流的动态对比增强磁共振成像药代动力学参数分布估计

在现代医学诊断和临床研究中,动态对比增强磁共振成像(Dynamic Contrast-Enhanced Magnetic Resonance Imaging, DCE-MRI)技术提供了有关组织病理学的重要信息。通过拟合轨迹动力学(Tracer-Kinetic, TK)模型,可以从时间序列MRI信号中提取药代动力学(Pharmacokinetic, PK)参数。然而,这些估计的PK参数受到多种不可避免的变异来源,如信噪比(Signal-to-Noise Ratio, SNR)、本底T1时间、起始时间、动脉输入功能(Arterial Input Function, AIF)和拟合算法等的影响。这些因素导致了PK参数估计的不确定性。因此,估计这些PK参数的后验分布将有助于同时量化PK参数的值及其...

基于Siamese-Transport域适应框架的3D MRI胶质瘤和阿尔茨海默病分类

基于Siamese-Transport域适应框架的3D MRI胶质瘤和阿尔茨海默病分类 研究背景 在计算机辅助诊断中,3D磁共振成像(MRI)筛查对于早期诊断各类脑部疾病具有重要作用,可以有效防止病情恶化。胶质瘤是一种常见的恶性脑肿瘤,其治疗方案因肿瘤级别的不同而有所不同。因此,准确高效的3D MRI分类在医学影像分析中至关重要。然而,传统的深度学习模型在应用于临床获得的无标签数据时,表现会严重退化,主要原因是域间不一致性,如不同设备类型和数据获取参数的差异。现有的方法主要集中在减少域间差异,但忽略了语义特征和域信息的纠缠。 论文来源 本文由Shandong University的Luyue Yu,Ju Liu,Qiang Wu,Jing Wang和Aixi Qu等人撰写,发表在2024年1...

利用可解释人工智能进行脑肿瘤检测和分类的视觉Transformer、集成模型以及迁移学习

由于脑肿瘤的高发病率和致命性,快速且准确地检测和分类脑肿瘤变得尤为重要。脑肿瘤包括恶性和非恶性两种类型,其异常生长会对大脑造成长期损害。磁共振成像(MRI)是一种常用的脑肿瘤检测方法。然而,依赖于专家手工分析 MRI 影像存在结果不一致的风险,同时仅仅识别肿瘤是不够的,快速确定肿瘤类型以尽早开始治疗同样重要。 为了提高肿瘤检测的速度、可靠性和公正性,本研究探索了多种深度学习(Deep Learning, DL)架构,包括 VGG16、InceptionV3、VGG19、ResNet50、InceptionResNetV2 和 Xception,并提出了基于最佳三种传递学习(Transfer Learning, TL)模型的新模型 IVX16。本文的多类分类模型旨在解决当前主要集中在二分类问题...