诵读困难儿童的脑连接分析

在阅读障碍儿童中基于阅读任务的脑连接分析(使用 EEG 信号) 阅读障碍是一种影响正常阅读能力的神经发育性疾病,即使智力水平正常的儿童也可能受到影响。本文研究了在阅读任务中,阅读障碍儿童与正常儿童的大脑连通性差异,并通过图论方法进行了分析。研究检测了阅读障碍和控制组儿童在阅读任务期间的脑功能连通性,并提出可能的脑网络受损证据。 研究背景 发展性阅读障碍(Developmental Dyslexia, DD)是一种影响大约5%到10%人口的神经发育性阅读障碍。尽管这些孩子智力水平正常,但在学业表现上存在显著差距。为了避免这些儿童面临学术挑战和心理问题,理解阅读障碍的神经生理学原因及早期检测非常重要。尽管已有大量行为研究表明阅读障碍个体和正常个体在阅读技能上的差异,但其根本原因仍不明确,需要进一...

创建互补综合网络用于快速筛选适用于新发疾病爆发的可用药物

新型药物重新定位方法的网络构建与应用研究 背景 在COVID-19大流行期间,研究人员和制药公司致力于开发治疗和疫苗。药物重新定位由于捷径被认为是快速有效的应对策略。药物重新定位试图发现已批准药物的新用途,被认为比传统药物发现路径更廉价且更迅速[1–3]。例如,瑞德西韦和地塞米松就是两种成功的重新定位药物[4–6]。虽然全球疫情逐渐转向地方性阶段,病毒传播仍在继续。快速发现候选药物并提供给医学或制药领域的专家进行研究的重要性已被COVID-19大流行深刻地提醒了我们[7]。 随着生物学机制的进步和生物医学知识的收集,更准确和精确的基于计算的药物重新定位成为可能。网络药物学(network medicine)通过观察生物实体(如药物、基因和疾病)之间的复杂关系,提供候选药物[8–11]。但在新...

利用基于相位的脑连接与图论的ADHD潜在早期生物标志物检测

ADHD 早期检测潜在生物标志的研究报告:基于相位的脑功能连接和图论分析 本文是一篇研究报告,题为“潜在生物标志物用于 ADHD 早期检测的研究:采用相位脑功能连接和图论分析”。这项研究由 Farhad Abedinzadeh Torghabeh、Seyyed Abed Hosseini 和 Yeganeh Modaresnia 完成,发表于 Physical and Engineering Sciences in Medicine(2023)第 46 卷,1447-1465 页。本文于 2023 年 9 月 5 日在线发表。本文的学术背景,研究方法,实验结果和科学价值将详细阐述。 学术背景和研究问题 注意缺陷多动障碍(ADHD)是一种神经发育疾病,以注意力不集中和过度活跃/冲动的症状为特征...

脑科学研究启发人工智能算法:知识组装的神经机制

脑科学研究启发人工智能算法:知识组装的神经机制

脑科学研究启发人工智能算法:知识组装的神经机制 背景简介 当新的信息进入大脑时,人类对世界的先前知识可以通过一种被称为“知识组装”(knowledge assembly)的过程迅速改变。近期,由Nelli等人进行的一项研究中,探索了人类大脑中知识组装的神经关联。研究者们受到这一神经机制的启发,开发了一种人工神经网络算法,以实现快速知识组装,提高系统的灵活性。这一研究再一次证明了研究大脑工作方式能够推动更好的计算算法的发展。 研究来源 这篇研究论文由Xiang Ji、Wentao Jiang、Xiaoru Zhang、Ming Song、Shan Yu和Tianzi Jiang完成,作者们主要来自中国科学院的脑科学与智能技术卓越创新中心、自动化研究所的脑网络组中心及实验室以及浙江实验室的增强智...

通过亲和图增强分类器进行哮喘预测:基于常规血液生物标志物的机器学习方法

哮喘预测通过关联图增强分类器:基于常规血液生物标志物的机器学习方法 背景介绍 哮喘是一种影响全球约2.35亿人的慢性呼吸系统疾病。据世界卫生组织(World Health Organization, WHO)统计,哮喘病的主要特点是气道炎症,导致哮喘患者出现喘息、呼吸急促和胸闷等症状。为了有效管理和治疗哮喘,及时准确的诊断至关重要。然而,传统的哮喘诊断方法往往结合病史、体格检查和肺功能测试,不仅昂贵,还由于某些患者的非典型症状,使得诊断时间延长或误诊。此外,儿童哮喘的诊断尤为困难,传统方法的耗时特性可能会加重这一问题。 随着机器学习(Machine Learning, ML)的发展,在分析医疗数据、识别模式和生成预测方面展现了巨大潜力。本研究旨在利用关联图增强分类器(Affinity Gra...

基于多功能连接图卷积网络的自闭症谱系障碍识别

自闭症谱系障碍(ASD)是一种以重复行为、狭窄的兴趣和严重的社交互动缺陷为特征的异质性疾病,意即在不同个体中表现差异较大。中国学龄前儿童自闭症的患病率约为1%。目前,自闭症的诊断依赖于诊断量表和医生询问,这种主观性强的评估方式极大地影响了诊断结果,给医疗、社会和教育护理带来了重大挑战。本文通过结合图卷积网络(Graph Convolutional Networks,GCN)与静态功能磁共振成像(rs-fMRI)数据,提出一种多功能连接基图卷积网络(mfc-GCN)框架,以实现对自闭症谱系障碍(Autism Spectrum Disorder,ASD)的早期诊断。本文由Chaoran Ma、Wenjie Li、Sheng Ke、Jidong Lv、Tiantong Zhou和Ling Zou共...