Reduced Graphene Oxide-Mediated Electron–Hole Separation Using Titanium Dioxide Increases the Photocatalytic Antibacterial Activity of Bone Scaffolds

Study on Reduced Graphene Oxide-Mediated Titanium Dioxide Photocatalytic Antibacterial Bone Scaffolds Academic Background Bacterial infection is one of the most common complications following the implantation of artificial bone scaffolds during bone defect repair. Bacteria form biofilms on the scaffold surface, releasing acids and enzymes that inte...

Research and Clinical Applications of Selective Laser Melting Tantalum Bone Plates

Research and Clinical Applications of Selective Laser Melted Tantalum Bone Plates Academic Background In the field of orthopedic implants, titanium (Ti)-based alloys and tantalum (Ta) are widely used due to their high biocompatibility. Titanium-based alloys are typically used to manufacture load-bearing implants, such as bone plates and femoral ste...

Enhancing Angiogenesis and Osseointegration through a Double Gyroid Ti6Al4V Scaffold with Triply Periodic Minimal Surface

Application of Double Gyroid Titanium Alloy Scaffolds Based on Triply Periodic Minimal Surface Structures in Bone Repair Academic Background Bone defect repair is a significant challenge in the field of orthopedics, especially in cases of critical-size bone defects caused by trauma, tumors, inflammation, and other diseases. Currently, the commonly ...

Magnesium and Gallium-Co-loaded Microspheres Accelerate Bone Repair via Osteogenesis and Antibiosis

Research on Magnesium and Gallium Co-loaded Microspheres Accelerating Bone Repair Academic Background Bone defects are a common clinical challenge, often caused by infection, tumor resection, or mechanical trauma. Bone defects not only affect patients’ quality of life but may also lead to functional loss. Although bone grafting is currently the pri...

Cav3.3-Mediated Endochondral Ossification in a Three-Dimensional Bioprinted GelMA Hydrogel

Cav3.3-Mediated Endochondral Ossification in a Three-Dimensional Bioprinted GelMA Hydrogel

Study on Cav3.3-Mediated Endochondral Ossification in 3D Bioprinted GelMA Hydrogel Research Background Bone development is a complex process, in which the growth plate (GP) plays a crucial role in the longitudinal growth of long bones. The growth plate regulates bone maturation through the process of endochondral ossification (EO). However, GP dysf...