A Novel CNN-Based Image Segmentation Pipeline for Individualized Feline Spinal Cord Stimulation Modeling

Automated Spinal Cord Segmentation Pipeline Based on Convolutional Neural Network (CNN) for Individualized Cat Spinal Cord Stimulation Modeling Background and Research Motivation Spinal cord stimulation (SCS) is a widely used treatment method for chronic pain management. In recent years, it has also been used to modulate neural activity, aiming to ...

Attention-Guided Graph Structure Learning Network for EEG-enabled Auditory Attention Detection

Attention-Guided Graph Structure Learning Network for EEG-enabled Auditory Attention Detection

Application of Attention-guided Graph Structure Learning Network for EEG-enabled Auditory Attention Detection Academic Background The “cocktail party effect” describes the human brain’s ability to selectively concentrate attention on one speaker while ignoring others in a multi-talker environment. However, for individuals with hearing impairments, ...

Feasibility of Endovascular Stimulation of the Femoral Nerve Using a Stent-Mounted Electrode Array

Feasibility of Intravascular Femoral Nerve Stimulation using a Stent Electrode Array In recent years, electrical stimulation of peripheral nerves has gained attention as a potential therapeutic approach for restoring impaired nerve function. Traditional electrode arrays typically require invasive surgical implantation, which imposes a significant b...

A Systematic Evaluation of Euclidean Alignment with Deep Learning for EEG Decoding

Systematic Evaluation of Euclidean Alignment with Deep Learning for EEG Decoding Background Introduction Electroencephalogram (EEG) signals are widely used in brain-computer interface (BCI) tasks due to their non-invasive nature, portability, and low acquisition cost. However, EEG signals suffer from low signal-to-noise ratio, sensitivity to electr...

Changes in Brain Functional Networks Induced by Visuomotor Integration Task

Frequency-Specific Reorganization of Brain Networks during Visuomotor Tasks Research Background Executing movements is a complex cognitive function that relies on the coordinated activation of spatially proximal and distal brain regions. Visuomotor integration tasks require processing and interpreting visual inputs to plan motor execution and adjus...

Bayesian Estimation of Group Event-Related Potential Components: Testing a Model for Synthetic and Real Datasets

Background Introduction The study of Event-Related Potentials (ERPs) provides important information about brain mechanisms, particularly in elucidating various psychological processes. In these studies, multi-channel electroencephalograms (EEGs) are typically recorded while subjects perform specific tasks, and the trials are categorized based on st...